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Abstract 

This paper proposes an efficient method to 

implement RSA decryption algorithm.  RSA 

cryptosystem is the most attractive and popular 

security technique for many applications, such as 

electronic commerce and secure internet access.  It has 

to perform modular exponentiation with large 

exponent and modulus for security consideration.  The 

RSA cryptosystem takes great computational cost.  In 

many RSA applications, user uses a small public key to 

speed up the encryption operation.  However, the 

decryption operation has to take more computational 

cost to perform modular exponentiation by this case.  

This paper proposes an efficient decryption method not 

only based on Chinese Remainder Theorem (CRT) but 

also the strong prime of RSA criterion.  The proposed 

decryption method only takes 10% computational costs 

of the traditional decryption method.  It also reduces 

66% computational costs than that of decryption 

methods based on CRT only.  In a word, the speed of 

our proposed method is almost 2.9 times faster than 

the decryption method based on CRT only.  The 

proposed method enhances the performance of the RSA 

decryption operation. 

1. Introduction 

As the rapid progressing of modern information 

technology, security is an important technique of many 

applications including virtual private networks, 

electronic commerce and secure internet access.  RSA 

algorithm is the most popular and well-defined security 

primary technique.  There are many good security 

protocols based on RSA [1] cryptosystem.  RSA is 

widely used for digital signature and digital envelope, 

which provide privacy and authentication.  However, 

the RSA operation has to take great computation cost 

for security consideration.  In order to include RSA 

cryptosystem efficiently in many protocols, it is desired 

to devise faster encryption and decryption operations. 

In many applications, we usually select a small 

value such as 3, 17, or 65537 to be the public key to 

speed up the encryption operation [2].  However, by 

this way, the corresponding decryption operation costs 

more computational time because of the larger secret 

key.  We can speed up the decryption operation based 

on the Chinese Remainder Theorem (CRT) [3, 4] if we 

get the prime factors of modulus.  It is reasonable that 

somebody who holds the secret key can get the factors 

of modulus.  In addition, Hayashi proposed a new 

modular exponentiation method [5] to improve the 

computation time of RSA.  In his method, the modular 

exponentiation with the modulus n transforms to two 

substitute operations with moduli n + 1 and n + 2.  If 

moduli n + 1 and n + 2 can be factoring, user can apply 

CRT to these modular operations modulo to n + 1 and 

n + 2 for each.  The final result can be generated by 

Hayashi’s formula.  However, n is an odd number, we 

cannot factor n + 2 easily in his method.  This method 

is not practical. 

We propose an efficient method to implement RSA 

decryption operation in this paper.  This method is not 
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only based on CRT but also the strong prime of RSA 

criterion.  The security of RSA is based on the 

difficulty of factoring problem.  So, the prime factors 

of modulus of RSA algorithm must be strong primes.  

The large modular exponentiation result can be 

generated from small exponents and moduli.  The 

proposed method enhances the performance of RSA 

algorithm. 

The rest of this article is organized as follows: we 

will briefly review RSA algorithm in Section 2.  

Section 3 introduces our implementation method.  

Section 4 analyzes the computational complexity.  

Finally, we make some conclusions in Section 5. 

2. RSA algorithm 

RSA algorithm is a typical public-key cryptosystem.  

It is a basic technique of many security protocols.  It 

can be described briefly as follows: 

1. Choose two large strong primes, p and q.  Let n = 

p q.

2. Compute Euler value of n: (n) = (p - 1)(q - 1). 

3. Find a random number e satisfying 1 < e < (n) and 

gcd(e, (n)) = 1. 

4. Compute a number d such that d = e
-1

 mod (n).

5. Encryption: Given a message m satisfying m < n,

then the cipher text c = me
 mod n.

6. Decryption: m = cd
 mod n.

The security of RSA is based on the hard of 

factoring n.  To enhance the hardness of factoring n,

Ogiwara [6] suggests the following constraints on p and 

q:

1. Both (p - 1) and (q - 1) should contain a large prime 

factor such that r1|(p – 1) and t1|(q – 1), where r1

and t1 are two large primes. 

2. Both (p + 1) and (q + 1) should contain a large prime 

factor such that s1|(p + 1) and u1|(q + 1), where s1

and u1 are two large primes. 

There are many methods have been proposed to 

generate primes for RSA [6, 7, 8, 9]. These methods 

first use some primes r1 and s1 to find the strong prime 

p.  The bit lengths of r1 and s1 are half of the bit length 

of p.  Figure 1 shows the strong prime structure for 

RSA cryptosystem.  Another prime q also can be 

generated by this method.  In addition, the numbers p – 

1, p + 1, q - 1 and q + 1 can be factored into three 

factors at least. 

3. Our efficient decryption method 

By the security consideration, the prime factors p

and q of modulus n in RSA cryptosystem must be 

strong primes.  It is reasonable that the secret key 

holder knows the prime factors of p – 1, p + 1, q – 1 

and q + 1.  The proposed decryption method is based 

on the strong primes of RSA criterion and Chinese 

Remainder Theorem (CRT).  Figure 2 shows the 

diagram of our decryption method.  The secret key 

holder performs the decryption procedure: cd
 mod n by 

our method as the following steps. 

Step 1 Factor p – 1, p + 1, q – 1 and q + 1 to get their 

prime factors.  We assume that moduli p – 1, p

+ 1, q – 1 and q + 1 be expressed as follows. 

1
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Step 2 Compute the modular exponentiations with 

prime factors of p - 1 as the modulus.  Then, 

apply the CRT to generate y1 = cd mod (p - 1) 

based on these results.  By the same way, the 

secret key holder generates y2 = cd mod (p + 1),

y3 = cd mod (q - 1) and y4 = cd mod (q + 1) 

individually.  The detail steps are as follows: 

2.1 Compute c(p-1),i = c mod ri
i, i = 1, , h.

2.2 Compute d(p-1), i = d mod (ri
i), i = 1, , h.

2.3 Compute the modular exponentiation m(p-1),i

= c(p-1),i
d(p-1),i mod ri

i, i = 1, , h.

2.4 Apply the CRT to generate y1 = cd mod (p – 

1) based on m(p-1),i, i = 1, , h.

Step 3 Compute X1 = 2-1(y1 + y2 – z) mod p where z = 0 

if y1 y2; otherwise z = 1 and X2 = 2-1(y3 + y4 – z)

mod q where z = 0 if y3 y4; otherwise z = 1. 

Step 4 Apply the CRT to generate the plaintext m = cd

mod n based on X1 and X2.

The numbers p – 1, p + 1, q - 1 and q + 1 can be 

individually decomposed into three prime factors at 

least in step 1.  The bit lengths of ri
i (i = 1, , h) are 

smaller than p -1.  The bit lengths of d(p-1), i (i = 1, , h)

are smaller than d.  In general, the complexity of 

modular exponentiation depends on the bit length of 

exponent and modulus.  The totally computation time 

of Step 2 to get y1 = cd mod (p -1) is smaller than to 

compute y1 by cd mod (p -1) directly.  The efficient 

results are similar to y2 = cd mod (p + 1), y3 = cd mod (q

- 1) and y4 = cd mod (q + 1).  The proposed decryption 

method is more efficient than the traditional method.  

Section 4 will demonstrate these results detail. 

In Step 3, we use (y1, y2) to compute X1, and (y3, y4)

to compute X2.  Theorem 1 demonstrates that X1 and X2

are generated as Step 3 correctly. 
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Figure 2 Our proposed decryption method for RSA cryptosystem 
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Figure 1 Strong primes for RSA cryptosystem 
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 [Lemma 1] Given y1 = X mod (p – 1) and y2 = X mod 

(p + 1) such that 0 X < (p2 - 1)/2 and p is a prime, 

then  

X = (p + 1)y1/2 – (p – 1)y2/2 + (p – 1)(p+1)z/2, 

where z is either 0 or 1. 

Proof: 

By y1 = X mod (p – 1) and y2 = X mod (p + 1), we get  

y1 + (p – 1)z1 = X,                                          (1) 

y2 + (p + 1)z2 = X,                                          (2) 

z1 and z2 are two positive integers. 

Equation (1)  (p+1):

(p + 1)y1 + (p + 1)(p – 1)z1 = (p + 1)X.                  (3) 

Equation (2)  (p-1):  

(p - 1)y2 + (p + 1)(p – 1)z2 = (p - 1)X.                    (4) 

Equation (3) – Equation (4):  

2X = (p+1)y1 – (p–1)y2 + (p–1)(p+1)(z1 - z2).        (5) 

Let z = z1 – z2, then Equation (5) can be rewriting as 

X = (p+1)y1/2 – (p–1)y2/2 + (p–1)(p+1)z/2.           (6) 

We will proof z is either 0 or 1 in Equation (6) by 

contradiction as follows: 

Case 1: 

Assume z < 0.  Since y1 p – 2 and y2  0, we get 

X  (p + 1)(p - 2)/2 – (p – 1)(p + 1)/2 

= -(p + 1)/2 < 0, 

when y1 = p – 2, y2 = 0 and z = -1.  

This result contradicts the given condition X  0.  

Hence, z is not smaller than 0. 

Case 2: 

Assume that z > 1.  Since y1  0 and y2 p, we get 

X  -(p – 1)p/2 + (p – 1)(p + 1)

= (p – 1)(p + 2)/2

> (p – 1)(p + 1)/2 

=  (p2 - 1)/2, 

when y1 = 0, y2 = p and z = 2.

This result contradicts the given condition X < (p2 - 

1)/2.  Hence, z is not larger than 1.   

By Cases 1, 2 and z1, z2 are integers, z must be either  0 

or 1.                                                                      Q.E.D. 

[Theorem 1] Given y1 = X mod (p – 1), y2 = X mod (p

+ 1), such that 0 X < (p2 - 1)/2 and p is a prime, then 

X = 2-1(y1 + y2 – z) mod p, where z = 0 if y1 y2;

otherwise z = 1.

Proof: 

By Lemma 1,  

X = (p + 1)y1/2 – (p – 1)y2/2 + (p – 1)(p+1)z/2, 

where z is either 0 or 1. 

We get  

X = 2
-1(y1 + y2 – z) mod p,                                      (7) 

where z is either 0 or 1. 

In addition, we will demonstrate the conditions of z = 0 

and z = 1 in Equation (7). 

By Equation (2) – Equation (1): 

y2 – y1 = (p–1)z1–(p+1)z2=(p–1)(z1–z2)–2z2,

where y1  0, y2  0, p > 0 and both z1 and z2

are two positive integers. 

Let z = z1 – z2, then 

y2 – y1 = (p–1)z – 2z2.                                             (8) 

By Equation (2), and 0 X < (p2 - 1)/2, 0 y2 p, we 

get 0 y2 + (p + 1)z2 < (p2 - 1)/2. 

Hence, 0 z2 < (p – 1)/2. 

By Equation (8),  

y2 – y1 > (p – 1)z – (p - 1) = (p – 1) (z – 1).           (9) 

Case 1: (y1 y2)

Since y1 y2, we get y2 – y1  0. 

By Equation (9), we get (p – 1)(z – 1) < 0. 

Since p - 1 > 0, we have z – 1 < 0. 

That is z < 1. 

By Lemma 1, z must be 0 when y1 y2.

Case 2: (y1 < y2)

Since y1 < y2, we get y2 – y1 > 0. 

By Equation (9), we get (p – 1)(z – 1)  0.

We get  z  1.

By Lemma 1, z must be 1 when y1 < y2.

Hence, X = 2-1(y1 + y2 – z) mod p, where z = 0 if y1 y2;

otherwise z = 1.                                                     Q.E.D. 

Although we need to compute the multiplicative 

inverse of 2 modular p in Step 3, Theorem 2 provides 

an efficient method to compute the inverse value.   

[Theorem 2]: Let p be an odd prime, the multiplicative 

inverse of 2 modulo p is (p + 1)/2. 

Proof:  

By the equation: 

2  (p + 1)/2 = p + 1  1 mod p.

We get the multiplicative inverse of 2 modulo p is (p + 

1) / 2.                                                                    Q.E.D. 

4. Computational complexity

This section regularly demonstrates our proposed 

decryption method is more efficient than the traditional 

decryption method and decryption method based on 

CRT only.  We define some notations as follows: 

MODE(y, z) denotes an operation of modular 

exponentiation (xy mod z).

M(w), A(w) and Mod(w) denote operations of 

multiplication, addition and modulus with the bit 

length of operand is w.

l(w) denotes the bit length of w.

S denotes the shift operator. 

By the addition chain method [10] the modulo 

operation cd mod n can be expressed as: 

MODE(d, n) = 1.5 l(d)[M(l(n))+ 2 Mod(l(n)) + 1].(10) 

The multiplication and addition operations can be 

expressed as follows [11]: 
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M(w) = 3M(w/2) + 5A(w) + 2S,                                 (11) 

A(w) = w/32.                                                              (12) 

The modulo operation also can be expressed as the 

following equations based on the divide and conquer 

concept [12]: 

Mod(w) = Mod(w/2) + 4M(w/2) + 1.5A(w) + 3S.      (13) 

Without loss of generality, we assume all of Mod(32),

M(32), A(32) and S take one clock cycle.  By the 

equations (11) and (12), we get 

M(1024)= 3M(512) + 5A(1024) + 2S

= 3M(512)  + 162 

=3[3M(256) + 5A(512) + 2S] + 162 

=9M(256) + 408 

=9[3M(128) + 5A(256) + 2S] + 408 

=27M(128) + 786 

=27[3M(64) + 5A(128) + 2S] + 786 

=81M(64) + 1380 

=81[3M(32) + 5A(64) + 2S] + 1380 

=243M(32) + 2352 

=2595.

By the equations (11), (12) and (13), we get 

Mod (1024) = Mod(512) + 4M(512) + 1.5A(1024)

+ 3S

= [Mod(256) + 4M(256) + 1.5A(512) + 

3S] + 3295 

= [Mod(128) + 4M(128) + 1.5A(256) + 

3S] + 4294 

= [Mod(64) + 4M(64) + 1.5A(128) + 

3S] + 4577 

= [Mod(32) + 4M(32) + 1.5A(64) + 3S]

+ 4646 

= 4657 

By the consideration of security, the bit length of 

modulus should be 1024 at least.  By Equation (10), the 

traditional decryption method can be repressed as 

MODE(d, n) = 1.5  1024[M(1024) + 2 Mod(1024)+1]. 

That is, the traditional decryption method should take 

18293760 clock cycles. 

If the decryption method based on CRT only and the 

bit lengths of p and q are equal, the operation of the 

decryption method can be repressed as 2MODE(d/2, 

n/2) + A(512) + 2M(512) + Mod(512).   By this case, 

the decryption method takes 5434296 clock cycles. 

In our proposed method, p - 1, p + 1, q - 1 and q + 1 

can be factored into at least three numbers.  Without 

loss of generality, we assume the bit length of the 

largest prime factor is about l(n)/4 and others are about 

l(n)/8 [6, 7, 8, 9].  The total number of operations of 

our proposed method is 4MODE(d/4, n/4) + 

8MODE(d/8, n/8) + 4[A(256) + 2M(256) + Mod(256)]

+ 4[A(128) + 2M(128) + Mod(128)] + 2[A(512) + 

M(512) + Mod(512)] + A(512) + 2M(512) + Mod(512).

It takes 1851806 clock cycles. 

The traditional decryption method takes 18293760 

clock cycles totally.  The decryption method based on 

CRT takes 5434296 clock cycles.  However, our 

proposed method only takes 1851806 clock cycles.  In 

comparing with the traditional decryption method, our 

proposed method only takes 10% computational cost of 

the traditional method, but the decryption method 

based on CRT should take 30%.  In other words, the 

computational cost of our proposed scheme is only 

34% of the decryption method based on CRT.  The 

speed of our proposed method is almost 2.9 times 

faster than the decryption method based on CRT only. 

5. Conclusions 

In this paper, we propose an efficient method to 

implement RSA decryption algorithm.  This decryption 

method is not only based on CRT but also the strong 

prime of RSA criterion.  The 1024 bits RSA original 

decryption method without any tricks must takes 

18293760 clock cycles.  The decryption method based 

on CRT takes 5434296 clock cycles.  By our proposed 

decryption method, it only takes 1851806 clock cycles.  

The complexity of our proposed method is only 10% of 

the traditional decryption method.  Our proposed 

method reduces approximately 66% computational 

costs as comparing with the decryption method based 

on CRT.  In a word, the speed of our proposed method 

is almost 2.9 times faster than the decryption method 

based on CRT only.  Our method can be applied to not 

only decryption operation but also signing phase of 

digital signature.  This efficient decryption method can 

enhance the performance of the RSA algorithm. 
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